Neutron and x-ray sources

Rob McQueeney

Physics 590

Different probes

	NEUTRONS	X-RAYS	ELECTRONS
Wavelength range	0.4 - 10 Å	0.1 - 5 Å	0 .04 - 0.2 Å
Energy range	0.001 - 0.5 eV	3000 - 100000 eV	6000 - 120000 eV
Cross-section	10 ⁻²⁵ barns	10 ⁻²⁵ Z ² barns	~10 ⁻²² barns
Penetration depth	~ cm	~ μ m	~ nm
Typical flux	10 ¹¹ s ⁻¹ m ⁻²	10 ²⁴ s ⁻¹ m ⁻²	10 ²⁶ s ⁻¹ m ⁻²
Beam size	mm-cm	μ m-mm	nm-μm
Typical sample	Any bulk sample	Small crystals, powders, surfaces	Surfaces, thin films, grains, gases
Techniques	Diffraction Inelastic scattering Reflectivity	Diffraction Photon absorption Photoemission Inelastic scattering	Microscopy Diffraction Emission spectroscopy EELS
Phenomena	Magnetic/crystal structures collective excitations (phonons, spin waves) electronic excitations (crystal- field, spin-orbit)	Crystal structures, electronic transitions (photoemission, absorption),	microstructure crystal structures electronic transitions

Physics 590

Cross-sections

Neutrons

- Random with Z
- Depends on isotope
- Depends on nuclear spin
- Absorption can be problem

		Abundance	Cross-	Absorption
		(%)	section (bn)	(bn)
	Gd		180	49700
	152Gd	0.2	13	735
	154Gd	2.1	13	85
	155Gd	14.8	66	61100
	156Gd	20.6	5	1.5
	157Gd	15.7	1044	259000
	158Gd	24.8	10	2.2
Phy	160Gd	21.8	10.52	0.77
	·	•	·	

Producing neutrons

FissionNuclear reactor

Moderators →Cold-Thermal

SpallationParticle accelerator

Moderators →Cold-Epithermal

Neutrons by reactor fission

High flux isotope reactor - ORNL

Physics 590

High Flux Isotope Reactor at Oak Ridge National Laboratory

ORY

The United States' highest flux reactor-based source of neutrons for condensed matter research

07-G00244E/arm

Under consideration

Neutrons by pulsed spallation

Spallation Neutron Source (ORNL)

Target-moderator system

SNS liquid Hg target

Fig. 3. Horizontal cross-section of the flux-trap moderators.

Spallation Neutron Source at Oak Ridge National Laboratory

The world's most intense pulsed, accelerator-based neutron source

Backscattering Spectrometer (BASIS) . BL-2

Dynamics of macromolecules, constrained molecular systems, polymers, biology chemistry, materials science

Spallation Neutrons and Pressure

Diffractometer (SNAP) • BL-3

Materials science, geology, earth and

environmental sciences

Chris Tulk + 865.576.7028 + tulkca@ornl.go

Eugene Mamontov · 865.574-5109 · mamontove@ornl.gov

Nanoscale-Ordered Materials Diffractometer (NOMAD) • BL-1B (2010)

Liquids, solutions, glasses, polymers, nanocrystalline and partially ordered complex materials

Joerg Neuefeind • 865.241.1635 • neuefeindic@ornl.gov

Wide Angular-Range Chopper Spectrometer (ARCS) • BL - 18

Atomic-level dynamics in materials science, chemistry, condensed matter sciences

Doug Abernathy · 865.576.5105 · abernathydl@ornl.gov

Fine-Resolution Fermi Chopper Spectrometer (SEQUOIA) • BL - 17 (2008)

Dynamics of complex fluids, quantum fluids, magnetism, condensed matter, materials science

Garrett Granroth • 865.576.0900 • granrothge@ornl.gov

Ultra-Small-Angle Neutron Scattering Instrument (TOF-USANS) • BL-1A (2012*

Life sciences, polymers, materials science. earth and environmental sciences Michael Agamalian · 865.576.0903 ·

Chemical Spectrometer (VISION) • BL-16B (2011)

Vibrational dynamics in molecular systems, chemistry Christoph Wildgruber • 865.574.5378 • wildgrubercu@ornl.gov

BL - 16A

Neutron Spin Echo Spectrometer (NSE) • BL - 15 (2009)

High-resolution dynamics of slow processes, polymers, biological macromolecules Michael Ohl • 865.574.8426 • ohlme@ornl.gov

Hybrid Spectrometer (HYSPEC) • BL-14B (2011)

Atomic-level dynamics in single crystals, magnetism, condensed matter sciences

Mark Hagen • 865.241.9782 •

BL-14A

Magnetism Reflectometer • BL-4A

Chemistry, magnetism of layered systems and interfaces Valeria Lauter • 865.576.5389 • lauterv@ornl.gov

Liquids Reflectometer • BL-4B

Interfaces in complex fluids, polymers, chemistry John Ankner • 865.576.5122 • anknerjf@ornl.gov

Cold Neutron Chopper Spectrometer (CNCS) • BL - 5

Condensed matter physics, materials science, chemistry, biology, environmental science

Georg Ehlers • 865.576.3511 • ehlersg@ornl.gov

Extended Q-Range Small-Angle Neutron Scattering Diffractometer (EQ-SANS) • BL-6 (2008)

Life science, polymer and colloidal systems, materials science. earth and environmental sciences

Jinkui Zhao · 864.574.0411 · zhaoj@ornl.gov

Elastic Diffuse Scattering Spectrometer (CORELLI) . BL-9 (2013)

> Detailed studies of disorder in crystalline materials Feng Ye • 865.576.0931 • yef1@ornl.gov

BL-10

Macromolecular Neutron Diffractometer (MaNDi) • BL-11B (2012)

Atomic-level structures of membrane proteins, drug complexes, DNA

Leighton Coates

Fundamental Neutron Physics Beam Line • BL-13 (2008)

Fundamental properties of neutrons

Geoffrey Greene • 865.574.8435 • greenegl@ornl.gov

Single-Crystal Diffractometer [TOPAZ] • BL-12 (2009)

Atomic-level structures in chemistry, biology, earth science, materials science, condensed matter physics

> Christina Hoffmann - 865.576.5127 hoffmanncm@ornl.gov

Powder Diffractometer (POWGEN) . BL-11A (2008)

Atomic-level structures in magnetism, chemistry, materials sciences Jason Hodges • 865.576.7034 • hodgesj@ornl.gov

* Scheduled commissioning date

Engineering Materials Diffractometer (VULCAN) • BL-7 (2008)

BL-8A

BL-8B

Mechanical behaviors, materials science, materials processing

Xun-Li Wang • 865.574.9164 • wangxl@ornl.gov

Powder diffraction

Determine the crystal structure

TOF powder diffraction

POWGEN @ SNS

Time-of-flight $\tau = L/v = \lambda mL/h = 2mLd\sin\theta/h$

Physics 590

Time, wavelength, or d-spacing

Single-crystal: more detail than powders Wide angle diffraction: Get an overview of everything

Single crystal diffraction

Triple-axis diffraction: focus in on specific points of interest

HB-1A 3-axis spectrometer

Orbital ordering in YVO₃

Production of x-rays

X-ray tube

Rotating anode

How do we get x-rays?

- Static charge ---- Electric field
- Charge moving at constant v ---- Magnetic field

Accelerating charge --- Electromagnetic radiation

Synchrotron radiation is

highly collimated

highly linearly polarized

highly brilliant

continuous wavelength distribution (beyond Cu, Mo, etc..)

Advanced Photon Source

Synchrotron

Insertion Devices

Main Undulator Line

Places to go

Further references

General neutron scattering

- G. Squires, "Intro to theory of thermal neutron scattering", Dover, 1978.
- S. Lovesey, "Theory of neutron scattering from condensed matter", Oxford, 1984.
- R. Pynn, http://www.mrl.ucsb.edu/~pynn/.

Structural refinements

- GSAS http://www.ncnr.nist.gov/xtal/software/gsas.html
- FullProf http://www.ill.eu/sites/fullprof/

How to get beam time

- Talk to one of us at Ames about your experiment
- We can identify a suitable instrument
- Talk to instrument scientist
- Write a beamtime request